Exosomes and Microvesicles from Adipose-derived Mesenchymal Stem Cells Protect the Endothelial Glycocalyx From Lipopolysaccharide Injury
Sharleen Taghavi, MD, MPH, MS, FACS, Sarah Abdullah, MBBS, Farnaha Shaheen, BS, Juan C Duchesne, MD, FACS, Stephen Braun, PhD, Chad Steele, PhD, Derek Pociask, PhD, Jay Kolls, MD, PhD, Olan Jackson-Weaver, PhD
Tulane University School of Medicine, New Orleans, LA

INTRODUCTION: Endothelial glycocalyx (EGX) damage occurs in various pathological states and results in endotheliopathy. Exosomes (ES) and Microvesicles (MS) isolated from adipose-derived mesenchymal stem cells (ASCs) have therapeutic potential. We hypothesized that ASC-derived ES and MS would not affect EGX shedding after injury.

METHODS: ES and MS were collected from ASC conditioned media by centrifugation (10,000g for MS, 100,000g for ES). Human umbilical vein endothelial cells (HUVECs) were exposed to 1 μg/mL lipopolysaccharide (LPS). LPS injured cells (n=578) were compared to HUVECs with concomitant LPS injury plus 0.1 or 1.0 μg/mL of ASC-derived ES or MS for 24 hours. These cohorts were compared to control HUVECs (n=786) and HUVECs exposed to ES (n=505) or MS (n=500) alone. Cells were fixed and stained with FITC-labelled wheat germ agglutinin (WGA) to quantify EGX.

RESULTS: 0.1 μg/mL of ES alone resulted in EGX reduction. Treatment with 0.1 μg/mL ES (n=514) after LPS injury increased EGX intensity compared to control and LPS injury alone. Treatment with 0.1 μg/mL of MS (n=467) after LPS injury resulted in similar EGX intensity compared to control. Treatment with a higher dose of 1.0 μg/mL ES (6.08 AU, n=540) or 1.0 μg/mL MS (5.68 AU, n=510) also protected the EGX after LPS injury (5.09 AU) when compared to LPS injury alone (p=NS).

CONCLUSION: While ES and MS protect the EGX after LPS injury, ES appear to have increased therapeutic benefit. ES alone reduces the EGX. In addition, lower doses of ES are superior to higher doses.

Expanding the Field Artificial Intelligence Triage Tool: A Novel Prediction Tool for Internal Injury Patterns in Gunshot Wound Victims
Ava K Mokhtari, MS, Osaid Alser, MD, MS(Oxon), Charlie Nederpel, BSc, Hassan Mashhari, MD, Theodorus Tsiligkaridis, PhD, Noelle N Saillant, MD
Massachusetts General Hospital, Boston, MA

INTRODUCTION: The objectives of this study were to expand the capabilities and provide a proof of concept for the Field Artificial Intelligence Triage (FAIT) tool to assess model performance in predicting internal injuries in gunshot wound (GSW) patients.

METHODS: Utilizing the 2015-2017 American College of Surgeons Trauma Quality Improvement Program (ACS-TQIP) databases, we included all patients (16-60 years old) with truncal GSWs. Using supervised training, a novel deep regression neural network (DRNN) was trained using 80:20 train:test split for binary outcome predictions of internally injured structures. The DRNN’s performance was characterized using an Area Under the Receiver Operating Characteristics curve (AUROC). An auxiliary prediction model was developed using a novel constrained confidence NN (CCNN) to predict the true-class probability (TCP), an indicator of the DRNN’s degree of confidence.

RESULTS: The GSW database population was 28,138, with a median age of 27 (interquartile range, IQR [22, 36]) and a median injury severity score of 10 (IQR [5, 19]). The DRNN’s global AUROC for predicting internally injured structures was 0.957, AUROC extremity was 0.990, AUROC abdomen was 0.934, and AUROC vascular structures was 0.939. The TCP model correctly predicted 96.7% of DRNN’s incorrect predictions while maintaining 95.3% of correct predictions.

CONCLUSION: This iteration of FAIT resulted in a model capable of predicting internal injuries following truncal GSWs. Furthermore, our novel AI tool is able to produce confidence in its predicted outcomes. With further training and validation, these results expand FAIT’s capability of providing triage support and early injury identification to prehospital providers.

Extended Reality for Initial Trauma Patient Care Simulation: A Pilot Study
Kaori Ito, MD, PhD, FACS
Teikyo University School of Medicine, Tokyo 113-0032, Japan

INTRODUCTION: Extended reality (XR) integrates virtual reality, augmented reality, and mixed reality technologies. The effectiveness of XR in initial trauma patient care simulation has not been well studied. We conducted a pilot study to develop a simulation of initial trauma care using XR technology and evaluate its effectiveness.

METHODS: Clinical staff and residents at our trauma resuscitation center (n=30) viewed CT images on a conventional flat screen monitor of a scenario of a patient with severe trauma, to formulate a diagnosis and treatment strategy. Three-dimensional CT images were then viewed stereoscopically using the online application Holoeyes MD and projected into the air using a holographic lens. After the simulation, participants completed a survey comprising 13 questions on a 7-point Likert scale. Scores ≥5 were rated positive and scores ≤3 were rated negative. The median score for each question was analyzed.