CONCLUSION: PHT in urban, penetrating trauma was not associated with improved outcomes. Further studies are needed to determine if PHT should be foregone in favor of immediate transportation in this patient population.

Comparison of Nebulized Ketamine at 3 Different Dosing Regimens for Treating Acute and Chronic Painful Conditions: A Prospective, Randomized, Double-blind Clinical Trial
Maimonides Medical Center, Brooklyn, NY
WITHDRAWN

Early Video-Assisted Thoracoscopic Surgery for Retained Hemothorax Is Associated with Higher Mortality in the Most Severely Injured Patients
Khaled Abdul Jawad, MD, Richard Epstein, MD, Roman Dudaryk, MD, Alessia Cinci, MD, Eva Urrechaga, MD, Majid Chammas, MD, Rishi Rattan, MD, G Daniel Pust, MD, Nicholas Namias, MD, MBA, D Dante Yeh, MD, MHPE
Ryder Trauma Center, University of Miami Miller School of Medicine, Miami, FL

INTRODUCTION: Early video-assisted thoracoscopic surgery (VATS) is recommended to treat retained traumatic hemothorax and improve outcomes. We explored the association between VATS timing and outcomes when stratified by injury severity.

METHODS: The 2017 ACS Trauma Quality Improvement Program (TQIP) database was queried for adults who underwent VATS for hemothorax evacuation. Subjects were assigned to groups based on time-to-VATS: Early (≤ 5 days) and Late (≥ 5 days) then stratified by Injury Severity Score (ISS) into mild/moderate (≤ 15), severe (16-24), and very severe (≥ 25). Conversion to thoracotomy, intensive care unit (ICU) and hospital length of stay (LOS), and mortality were compared between the groups. P-values ≤ 0.05 were statistically significant.

RESULTS: Of 1,229 subjects, there were 664 (54%) in Early and 565 (46%) in Late. In mild/moderate injury, Early compared to Late had shorter ICU (4 vs. 7 days, p<.001) and hospital LOS (7 vs. 15 days, p<.001) with no significant difference in mortality. In severe injury, Early compared to Late had shorter ICU (5 vs. 8 days, p<.001) and hospital LOS (9 vs. 17 days, p<.001) with no significant difference in mortality. In very severe injury, Early compared to Late had shorter ICU (7 vs. 14 days, p<.001) and hospital LOS (12 vs. 25 days, p<.001); however, mortality rate was significantly higher in Early (19.5% vs. 1.3%, p<.001). Conversion to thoracotomy was rare (≤ 2%).

CONCLUSION: Using this nationwide database, we confirm that Early VATS was associated with shorter ICU and hospital LOS compared to Late for all injury severities. However, in the most severely injured patients, Early VATS was associated with higher mortality.

Estrogen Prevents Reactive Oxygen Species (ROS) Mediated Damage of the Endothelial Glycocalyx in Hemorrhagic Shock and Resuscitation
Sarah Abdullah, MBBS, Jake Packer, BSE, Aaron Cotton-Betteridge, BS, Kevin Slaughter, MD, Farhana Shabeen, BS, Juan C Duchenne, MD, FACS, Sharven Taghavi, MD, FACS, Alan Jackson-Weaver, PhD
Tulane University, New Orleans, LA

INTRODUCTION: Pre-menopausal women show reduced coagulopathy after trauma. Endothelial glycocalyx (EGX) damage is likely an important driver of the coagulopathy of shock and trauma. The effect of estrogen (EG) on the EGX is unexplored. We hypothesize that estrogen prevents ROS mediated damage of the endothelial EGX in hemorrhagic shock and resuscitation (H/R).

METHODS: Male (M) and female (F) rats were compared in a pressure-controlled HS model followed by resuscitation with lactated ringer’s solution for 30 minutes. Syndecan-1 levels in the plasma were quantified using ELISA to identify EGX damage. HUVECs, treated with or without β estradiol at 1ng/mL dose for 4 days, were subjected to hypoxia and reoxygenation (Hy/Re) and stained with anti-syndecan 1 antibody. Syndecan-1 immunofluorescence was measured. Dimethyl succinate (DMS, 0.1% or 0.5% by volume) was used to induce ROS in HUVECs. ROS was measured using mitoSOX staining.

RESULTS: In vivo studies in F rats showed reduced syndecan-1 shedding compared to the M rats 30 minutes after resuscitation (9.50 ng/ml in M vs 4.03 ng/ml in F). β estradiol treated HUVECs showed preserved glycocalyx after Hy/Re (68.44% vs. control cells (51.50%); estradiol reduced the mitoROS after H/R (29.10) vs. control (35.14). Treatment with β estradiol did not prevent ROS generation by DMS (16.50 at 0.1%, 20.92 at 0.5% in control, 18.60 at 0.1%, 20.10 at 0.5% in estrogen treated cells).

CONCLUSION: Our results show that estrogen is protective for the endothelial glycocalyx and reduces mitoROS in cultured cells. Estrogen doesn’t prevent DMS induced ROS, suggesting that estrogen modifies ROS-inducing metabolic pathways.