CONCLUSION: Identification of this dynamic process among the various fibroblast subpopulations during the healing process of irradiation wounds in wild-type mice is a novel finding and paramount to better understanding and treatment of radiation-induced skin fibrosis.

Low Rate of Ectropion after Subciliary Incision for Orbital Floor Repair: An Institutional Experience
Mayo Hotta, MD, Antoine L Carre, MD
Kaiser Permanente, Los Angeles, CA
University of Southern California, Los Angeles, CA

INTRODUCTION: The incidence of ectropion after subciliary incision for orbital floor repair is reportedly 14%, and the best incisional approach remains controversial. We review our institutional experience with subciliary incision, report the incidence of ectropion, and offer an explanation for our low rate of ectropion.

METHODS: Retrospective review of a healthcare system database in Southern California was performed to identify patients between 2007 and 2021 who had a subciliary incision for orbital floor repair. Demographic factors and outcomes were reviewed.

RESULTS: Unilateral subciliary incisions were identified in 45 patients. Mean age was 46.8 years, 47% were female, and mean BMI was 29.2 kg/m². Thirty-one percent identified as White, 38% as Black, 13% as Hispanic, and 18% as Asian. Eighteen percent were diabetic, 24% were American Society of Anesthesiologist physical status class I, 38% were class II, and 38% were class III. Mean length of follow-up was 16.3 months. One of 45 incisions developed ectropion (2.2%) and was managed nonoperatively.

CONCLUSION: Our rate of ectropion after a subciliary incision for orbital floor repair was much lower than reported previously. After implant or bone graft placement, the periosteum rim commonly slips posteriorly into the orbit, repositioning the inferior edge of the middle lamella at the orbital rim. The inferior rim can be closed inadvertently with a suture through the middle lamella, pulling the structure down and predisposing the lid to ectropion. The nature of the dissection required to effectively repair the orbital floor can lead to this nonanatomical closure. Avoiding this mistake is the key to mitigate ectropion after subciliary incision closure.

Magnesium-Based Bioresorbable Implants for Craniomaxillofacial and Orthopaedic Operations: In Vivo Studies in Rats
Nolan Winicki, BS, Jiajia Lin, BS, MSc, Patricia Holt-Torres, BA, MSc, Raj Vyas, MD, FACS, Arash Aslani, BS, Eric Tobin, BS, MS, Huinan Liu, PhD
University of California Riverside School of Medicine, Riverside, CA
Department of Bioengineering, University of California Riverside, CA

INTRODUCTION: Titanium and cobalt-chromium alloys are widely used for orthopaedic and craniomaxillofacial implants. However, they often require secondary operations for removal if complications occur or are no longer needed. Conversely, magnesium (Mg) and its alloys are biodegradable, biocompatible, and beneficial for bone growth, and provide mechanical properties similar to cortical bone. However, pure Mg degrades too rapidly for clinical applications. Here, we created Mg-based bioresorbable implants (B6 implants) with delayed degradation and enhanced stability and bioactivity. This in vivo study demonstrated the degradation process and osteogenic and inflammatory responses to B6 implants in comparison with relevant controls.

METHODS: The B6 implants were studied in Sprague Dawley rat mandibles for 24 weeks, in comparison with control implants of titanium, pure Mg, and sham controls. A maximum of 2 implants were inserted, one on each side of the mandible. Blood and soft-tissue organs were collected and analyzed for the distribution of degradation products from the implants. At the end point, the mandible was harvested, assessed grossly, and prepared for further histologic analyses.

RESULTS: No major deviations were found in the ion concentrations of blood and soft tissues, indicating that implant degradation rates were within physiological limits. The titanium implant exhibited no degradation, and the Mg-based implants exhibited partial degradation with bone formation surrounding the implant.

CONCLUSION: Our results show B6 implants with clinically applicable stability, osteogenic effects, and degradation. Use of B6 implants in orthopaedic and craniomaxillofacial operations offers rigid fixation while minimizing long-term implant complications and additional procedures to manipulate fixation devices.

<table>
<thead>
<tr>
<th>Type of Implant</th>
<th>Time of Surgery</th>
<th>24 Weeks Post-Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg-based B6 Implant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure