0.72 days; p = 0.02). Subset analyses within the Caucasian population demonstrated continued value for ADI predicting longer LOS (mean LOS 1.1 vs 0.77; p = 0.02) and ED utilization (6% vs 2.4%; p = 0.04).

CONCLUSION: Community-level deprivation indices, which transcend race, correlate with post-appendectomy healthcare utilization and provide a novel tool for future quality improvement initiatives to improve care for children living in disadvantaged communities.

Prenatal Administration of Heparin Binding Epidermal-Like Growth Factor as a Preventative Strategy for Necrotizing Enterocolitis

Marla A Sacks, MD, Yomara S Mendez, BS, Lauren Bathan, BS, William Im, BS, Timothy Won, BS, Laura F Goodman, MD, Faraz A Khan, MBBS, FACS, Andrei Radulescu, MD, PhD

Loma Linda University Children’s Hospital, Loma Linda, CA

Loma Linda University School of Medicine, Loma Linda, CA

INTRODUCTION: Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in neonates, particularly in premature infants. Prenatally administered heparin binding epidermal-like growth factor (HB-EGF) preserves intestinal mucosa, decreasing the incidence and severity of NEC. The objective was to show maternal intraperitoneal (IP) HB-EGF injection is delivered to intestinal tract of rat pups, protecting against NEC by preserving gut barrier function, by measurement of gut permeability and amniotic fluid concentrations.

METHODS: Pregnant rats received HB-EGF (800 μg/kg) by IP injection 2 hours before cesarean section at 21 days’ gestation. Three IP injection and 2 control animals were exposed to the NEC protocol, for a total of 5 pregnant female rats with 65 pups. Amniotic fluid collected at cesarean section was assayed with an HB-EGF-specific ELISA (ThermoFisher Scientific) for concentration quantification using linear regression analysis. Gut barrier function was investigated with fluorescein isothiocyanate-labeled dextran, given to pups orogastrically 4 hours before sacrifice. Serum levels measured at sacrifice were compared with time-matched NEC control animals 0, 24, and 48 hours after delivery (p < 0.05).

RESULTS: The amniotic fluid concentration in animals receiving HB-EGF had levels 3-fold higher compared with control animals 136.5 vs 52.6. Prenatal HB-EGF treatment decreased fluorescein isothiocyanate-labeled dextran, given to pups orogastrically 4 hours before sacrifice. Serum levels measured at sacrifice were compared with time-matched NEC control animals 0, 24, and 48 hours after delivery (p < 0.05).

CONCLUSION: Prenatal IP injection is an adequate route to deliver HB-EGF, and preserved gut barrier function. Maternal administration of HB-EGF might be effective prophylaxis against NEC by preserving gut barrier function.

PROM1⁺ Biliary Progenitor Cells Reside in Peribiliary Glands and Proliferate into Cholangiocytes in Response to Cholestatic Injury in Murine Biliary Atresia Models

Allen Zhong, MD, Celia Short, MD, Esteban Fernandez, PhD, Jiaobo Xu, BA, Kinji Asahina, PhD, Kasper S Wang, MD, FACS

Children’s Hospital of Los Angeles, Los Angeles, CA

USC Keck School of Medicine, Los Angeles, CA

INTRODUCTION: Biliary atresia (BA) is a congenital oblitative extrahepatic bile duct (EHBD) injury. In BA, intrahepatic PROM1⁺ hepatic progenitor cells (HPCs) give rise cholangiocytes comprising ductular reactions. Hypothesis: PROM1⁺ HPCs, present in peribiliary glands (PBGs) outside the EHBD lumen, differentiate into cholangiocytes after injury.

METHODS: EHBD immunofluorescence was performed in neonatal wild-type (WT) and Prom1 knockout (KO) BalbC mice with rhesus rotavirus (RRV)-mediated BA and Prom1^{cre-
er^{2.}Rosa26Gfp^(Prom1-Gfp)} B57BL/6 adult mice, wherein GFP⁺ denotes Prom1-expressing cell lineage, after bile duct ligation (BDL). Epithelial organoids from Prom1^{cre-
er²},Rosa26^{tm1TmG} WT and KO EHBDs were grown in Matrigel for 9 days. Confocal imaging was analyzed using ImageJ and Arivis Vision4D. Unpaired t-tests were performed for statistical analyses (p < 0.05).

RESULTS: At baseline, Prom1-Gfp mice expression was localized mostly to PBGs. After BDL, GFP⁺ cell lineage replaced nearly the entire EHBD lumen (Fig.). A similar pattern was observed in RRV-mediated BA. PBGs of RRV-treated KO mice were larger than WT PBGs (1,484.4 ± 1,156 vs 126.1 ± 86.3; p = 0.002). After 9 days in vitro, KO EHBD organoids were larger than WT (0.30 ± 0.87 vs 0.09 ± 0.20; p = 0.02), similar to in vivo findings. All organoids were mG⁺ (green), not mT⁺ (red), suggesting that only HPCs gave rise to viable organoids, even with Prom1 KO.
CONCLUSION: PROM1+ HPCs in PBG’s give rise to EHBD cholangiocytes after BDL and RRV-mediated BA. Larger PBGs in RRV KO mice suggests a cholangiocyte differentiation defect, paralleled in vitro with larger organoids. We conclude that PROM1 HPCs promote EHBD epithelial repair; this process might be disrupted in BA.

Figure. Lineage tracing of Tamoxifen-induced GFP expression in Prom1+ HPCs and their progeny in Prom1-Gfp EHBD after BDL.*-Peribiliary Glands (PBGs).

RAS Inhibition Delays Neuroblastoma Tumor Growth and Genes Upregulated in Tumors with High Ras Expression Can Be Identified Using Gene Set Enrichment Analysis

Modupeola Diyaolu*, MD, Vinodh Rajagopalan, PhD, DVM, Min Huang, MD, PhD, Jasmine C Zeki, BA, Rachel Greathouse, BA, John O’Bryan, PhD, Bill Chiu, MD, FACS
Stanford Medical Center, Stanford, CA
Medical University of South Carolina, Charleston, SC

INTRODUCTION: Despite low incidence of RAS mutations in neuroblastoma, elevated RAS activity is emerging as critical for tumorigenesis due to mutations in upstream activators of RAS or loss-of-function mutations in negative regulators. We developed RAS monobody, NS1, which prevents RAS activation of downstream effectors by inhibiting H-RAS- and K-RAS-mediated signaling. We hypothesized that NS1 monobody induction in orthotopic neuroblastoma mouse model delays tumor formation and growth and that RAS-associated gene signature in MYCN-nonamplified tumors can be identified by unbiased analysis of RNA-sequencing patient cohort.

METHODS: SK-N-FI neuroblastoma cells were stably infected with lentivirus encoded with doxycycline-regulated NS1 expression (SK-N-FI NS1). RAS activity suppression in SK-N-FI NS1 was determined by Western blot. SK-N-FI NS1 cells were injected into the left adrenal gland of immunocompromised mice to generate orthotopic xenografts. Mice received water ± doxycycline every other day and tumor growth was tracked with ultrasound. We used R2 platform to analyze Neuroblastoma-SEQC-498-seqcnb1-dataset (498 patients) and performed gene set enrichment analysis (GSEA) for MYCN-nonamplified, high HRAS expression tumors.